

What’s New in version 3.06 December 2013

ProAdmin version 3.06 introduces a flattened Benefit Definitions interface, the ability to run

estimates with a decrement type, new operators #GETTABVAL and #INARRAY, the ability to vary

the interest rate for Actuarial Equivalence by coded field, and many other features listed below.

Interface

 Flattened benefit interface. The Benefit Definition topics have been combined into a single

dialog box, with several parameters (e.g., the payable party in death benefits) rearranged into

a more logical location. This eliminates clicking when setting up plans and allows all pertinent

parameters to be easily viewed. Clicking on the triangle in front of the benefit formula or

payment forms will expand that section of the dialog box to facilitate editing.

What’s New, ProAdmin version 3.06 - 2 - December 2013

 Scrolling for dialog boxes with many parameters. Tall dialog boxes can be scrolled.

 Reviewing benefits. To make inputs easier to review:

o The listing of benefit entries has been condensed, without sacrificing readability. This is to

facilitate paper review and documentation.

o A tabular export to Excel of benefit entries is available to facilitate interactive review with

filtering, sorting, etc.

What’s New, ProAdmin version 3.06 - 3 - December 2013

 Decrement Type. The Estimated Benefit Calculation dialog box has been enhanced to allow

for the processing of specific decrement types.

Census Specifications

 The Beneficiary Data dialog box has been enhanced to allow for multiple beneficiary type

codes to be mapped to the ProAdmin Beneficiary Type codes (None, Non-spouse and Spouse).

For example, both Spouse and Domestic Partner beneficiary type codes can be mapped to the

ProAdmin Beneficiary Type code “Spouse”.

Interest & Annuity Factor Components

 Interest Factor and Annuity Factor Benefit Formula Components and Accrual Basis Components

can now reference generational mortality and age by year of birth mortality improvement

scales.

Operators

 New operator #INARRAY is available wherever Data Dictionary fields can be referenced

within expressions. This operator allows you to search array fields for specific values. The

desired value is the left argument and the array field is the right argument. If the value is

found in the array field, 1 is returned; if it is not found, 0 is returned. The left argument can be

a number, code, date, or temporary variable. For example, 10 #INARRAY StatusHistory will

return 1 if the member ever had a status value of 10.

 New operator #GETTABVAL is available in Service and Salary transformation expressions.

This operator will return the value in an external CSV file associated with look-up value(s). The

left argument is the name of the CSV file (in quotes; no path or file extension) containing the

look-up constraints and associated values. The right argument is a parenthesized list of

temporary variables (created by assignment within the expression), used to look up values in

the CSV file. If there is no value associated with the set of look-up values, 0 is returned.

For example, a 3 column table of values by date and age might be accessed with the following

expression:

D_dt := #DATE &

Age := #DATE #YEARDIF DOB &

What’s New, ProAdmin version 3.06 - 4 - December 2013

‘AgeTable' #GETTABVAL (D_dt,Age)

For more information about #GETTABVAL, please see the article beginning on Page 11.

 The #DATE operator can now be accessed in Benefit Definition benefit formulas, Accrual

Definition basis formulas, and Benefit and Accrual Basis subformula components. #DATE offers

fine control for defining benefits that vary over time. It is the set of all applicable calculation

dates.

Plan Definition

 A new parameter is available under the Plan Definitions Misc. Parameters… button that sets

alternative payment forms to “not applicable” (i.e., missing) when the member is not eligible

for the normal form of payment. If the parameter is checked and the member fails the

eligibility criteria for the normal form, then all forms of payment will be set to N/A.

 Extra Calculation Dates. New parameters are available under the Plan Definitions Misc.

Parameters… button that optionally add extra calculation dates to the default set of calculation

dates. This may be helpful, for example, to force a re-calculation of the accrued benefit at

specific dates.

The first new option will include all end of months or end of bi-weeks from the first calculation

year to the last calculation year. If you choose end of bi-weeks, you must specify a scalar date

field that contains an end of bi-week date; all other bi-weeks are generated from this date.

The second new option will include all the dates associated with a specified field. If the field is

a scalar date field, then that single date is added. If the field is an effective date array, then all

the effective dates are added; for a start/stop array, all the stop dates are added. If the array

field is a date array field, then all the date values will be added.

What’s New, ProAdmin version 3.06 - 5 - December 2013

Actuarial Equivalence

 The interest rate component of actuarial equivalence can now be varied by coded field. If you

select the <rates by coded database field> the Params… button will be enabled.

When you select the Params… button, the Crediting Rate by Coded Database field dialog box

will display. This is where you select the coded field that is used to determine the interest rate

for each of your groups.

What’s New, ProAdmin version 3.06 - 6 - December 2013

 Generational mortality, age by year of birth mortality, and age by year of birth mortality

improvement scales can now be referenced in Actuarial Equivalence library entries. (Note that

pre- and post-commencement mortality continues to be available. If referenced, the pre-

commencement mortality is only used during deferral periods.)

Database Field Components

 Array Values. The database field type of Benefit Formula Components and Accrual Basis

Components has been enhanced to return either the last reported value of a database field (the

current default) or the full set of array values from effective or start/stop date fields. This

allows a formula, for example, to easily vary based on the location a member was in at different

points in time.

If the field is a start/stop array and the date is in either the start date or the stop date then the

value at that date is return; otherwise 0 is returned. If the array is an effective date array, the

What’s New, ProAdmin version 3.06 - 7 - December 2013

value within the effective date range is returned and 0 is returned for any dates prior to the

earliest effective date.

Custom Operators

 Accruals after decrement. A Salary Custom Operator can now allow accruals after

decrement. This is available for both final and estimate calculations. Note that for this choice

to be effective, the referenced Salary Definition Set(s) must also reflect salaries after

decrement.

 Salaries after decrement. The Final Average Salary Custom Operator will now reflect salaries

after decrement for estimates. Previously this was only available for final calculations. Note

that for this choice to be effective, the referenced Salary Definition Set(s) must also reflect

salaries after decrement.

What’s New, ProAdmin version 3.06 - 8 - December 2013

Salary Definitions

 The Salary Definition Salary Stop event dialog box has been enhanced (primarily) to make

it easier to use the Salary and FAS custom operator options to reflect salary after decrement. A

new option to Include all reported salaries; stop projected salaries at decrement has been

added. Selecting this option allows you to include reported salaries even if they are reported

after decrement, such as unused vacation or sick pay. If a Estimated Benefit Calculation is

processed using this parameter and no salary is reported after decrement, projected salaries

will be stopped at decrement. The option to Include all reported and projected salaries is not

new, but has been relabeled for clarity. The new default option, Stop salaries at decrement,

will ignore any salary reported after decrement.

What’s New, ProAdmin version 3.06 - 9 - December 2013

Output

 Benefit formula and accrual basis components that have "_DT" (not case sensitive) as the last

three letters of the component name will now display in date format in Detailed, Summary, and

Output Definitions results.

 Accrual basis or benefit formula components that reference a date field from the Data

Dictionary will now display in date format in Detailed, Summary, and Output Definitions results.

 Temporary variables and database fields referenced in database field expression Benefit

Formula and Accrual Basis Components are now displayed in the Detailed Results, and the

expression is included as a footnote to the table.

 Re-run results comparison. (Released via patch in April, 2014) The “Re-run” button for

Estimated, Final and Dates/Age/Service calculations now provides more immediately helpful

information when the results of the re-run calculation differ from those that were previously

saved. The Input Data, External Tables, Summary Results and Output Definition Results are

individually compared and any differences (up to a specified MaxDifference amount) are

displayed directly in the viewer. New ProAdmin.ini file settings associated with this result

comparison are available and will be used if specified. “TestLevel=1” provides the detail

mentioned above. “Testlevel=2” adds a summary of changes to the calculation detailed results.

Additionally, the ProAdmin.ini file setting “MaxDifference” allows you to indicate how many

differences should be captured for each level of comparison noted in the “TestLevel” setting.

Tools

 Administrative factors can reference mortality tables with 2D improvement scales.

What’s New, ProAdmin version 3.06 - 10 - December 2013

Two Greenwich Office Park
Greenwich, CT 06831

tel: (203) 861-5530
fax: (203) 861-5531
email: support@winklevoss.com

website: www.winklevoss.com

System

 Date/time is now formatted using 12 hour (AM/PM) or 24 hour clock per Regional Settings.

 Timestamps will now be stored relative to UTC rather than local time allowing entries to be in

chronological order when work is done in different time zones.

 “Excel Binary Workbook (*.xlsb)” is an acceptable file type for exporting from or importing to

ProAdmin.

 A new, optional, ProAdmin.ini file setting “UpdateClientFiles” is now available. This new setting

controls whether a user has the capabilities to update the ProAdmin client files from a previous

version to the new version. If missing or set to "1" (i.e. Yes), a version update can proceed.

If the field is set to "0" (i.e. No), the user will be presented with a message informing them

that they are not allowed to update client files.

 A new ProAdmin.ini file setting “SQLFixDupFlds” is now available. This new setting allows you

to alias fields that appear more than once in the select statement. The parameter was added

because some versions of SQL Server no longer allow a SELECT with duplicate fields.

 There is a "View" button on backdoor selection boxes with the same functionality as the "View"

button on the command bar.

 Under 15. The age 15 minimum age requirement has been lifted. Calculations that previously

would not run because the member at some point was under age 15 will now calculate accurate

results. Beneficiaries under age 15 will be evaluating using zero mortality rates before age 15.

Changes Log

 Be sure to read the changes log (see the “Changes Log (ProAdmin).doc” file in the ProAdmin

directory) about updates to certain calculations that may change results.

What’s New, ProAdmin version 3.06 - 11 - December 2013

#GETTABVAL Operator

ProAdmin’s new #GETTABVAL operator, which is currently only available in salary and service

transformation expressions, simplifies the coding and maintenance of complex plans with

provisions such as dollar multipliers that change frequently. The operator allows such values to be

stored (and updated) externally to the system in a comma separated (i.e., .CSV) file. The

#GETTABVAL operator is then used to search the file for a value based on a a set of lookup values.

If no match is found, the operator returns 0.

The syntax for using the operator is:

a #GETTABVAL b

where:

a is the name, in quotes, of the CSV file containing the table; it does not include a path or

file extension (i.e., .CSV).

b is a parenthesized list of temporary variables (created by temporary assignment) that

are used to look up a value in the table specified by a

If the set of lookup values (b) corresponds to a value in the specified table (a), then that value

is returned; otherwise, 0 is returned.

The CSV file containing the values and their associated lookup values must have the following

characteristics:

 The file must be in one of these directories (and this is the search order):

1. Client directory

2. User directory

3. System directory (i.e., directory where ProAdmin is installed)

4. Historical interest rate directory HIRTDIR (as specified in the proadmin.ini file; only

used if HIRTCODE=2)

5. Regulatory files (per RegPath setting for server calculations)

 The 1st row may contain descriptors (e.g., Date, Plan, Location, Rate)

 The 1st or 2nd row may contain match indicators which define the type of match for a

column:

1. E = exact match (e.g., Location or Plan)

2. R = range match (e.g., Effective Date). If the date lookup range is 1/1/2000 to

12/31/2000, the indicator for this range is 1/1/2000. If a salary lookup range for a

value is from $20,000 up to but not including $25,000, the indicator for the $20,000

value is 20,000 and the indicator for the $25,000 value is 25,000.

3. I = ignore this column. Since #GETTABVAL only works with dates and numbers, you

might, for example, want to include a column with the location name next to the

column with the location code. Use an “I” to tell #GETTABVAL to ignore the column

with the descriptor.

4. V= value. This column contains the values you want #GETTABVAL to retrieve.

 If there is no match indicator row, the first column is assumed to contain a range (R), any

intermediate columns are assumed to contain exact matches (E), and the last column is

assumed to contain the values (V).

 There can only be one value (V) column.

 After the ignored columns are dropped, any blank lines and rows containing characters are

dropped/ignored. This allows you to include comments in the file.

What’s New, ProAdmin version 3.06 - 12 - December 2013

 Each row must contain exactly the same number of values (after ignored columns, blank

rows, and rows containing characters are dropped).

Once the processing detailed above is complete, all of the values remaining in the table are

numbers, ProAdmin codes (which are numbers), and dates, where the numbers and dates are

assumed to be formatted in the Windows local setting format. The table is then evaluated as

follows:

 The order of the table columns (after ignored columns, blank rows, and rows containing

characters are dropped) must match the order of the list of temporary variables that make

up the right argument to #GETTABVAL.

 When looking up values, exact matches are performed first, and then the range values are

used.

Some additional pointers when using #GETTABVAL are:

 If #GETTABVAL tries to load a CSV file that happens to be open in Excel, you’ll get a File

busy (being used by another application or user) message. This is because Excel “locks” a

CSV file without allowing read rights. However, if the file was open in NotePad, you won’t

get this message because NotePad only locks the file when you save it. Thus, opening the

file in NotePad will facilitate results checking.

 When you redisplay salary or service transformation expression detailed results for an old

saved estimate that used #GETTABVAL, the current version of the CSV file is used, not the

version that was available when the original calculation was performed. If the old/new

timestamps are different, a warning message will be displayed in the table footnotes.

Range vs Exact Matches

For the discussion which follows, consider these CSV files:

Year,Rate Year,Limit

R,V E,V

1990,100 1990,100

2000,115 2000,115

2010,125 2010,125

If you try to look up the value for 2001 in the 1st CSV file where year is treated as a range, 115

will be returned. That’s because 2001 is greater than or equal to 2000 and it’s strictly less than

2010.

If you try to look up the value for 2001 in the 2nd CSV file where year is treated as an exact

match, 0 will be returned. That’s because 2001 is NOT equal to 1990, 2000, or 2010. (A match

occurs ONLY if 2001 is exactly one of the years, and it isn’t.)

Range Order Matches

For the discussion which follows, consider these CSV files:

Effdate,Age,Value

R,R,V

1/1/1900,0,1.5

1/1/2000,0,1.7

1/1/2000,55,2.0

1/1/2000,60,3.0

1/1/2005,0,0.4

1/1/2005,55,0.5

Age,Effdate,Value

R,R,V

0,1/1/1900,1.5

What’s New, ProAdmin version 3.06 - 13 - December 2013

0,1/1/2000,1.7

55,1/1/2000,2.0

60,1/1/2000,3.0

0,1/1/2005,0.4

55,1/1/2005,0.5

The difference between these tables is that the Age column is the 2nd column in the first file and

the 1st column in the 2nd file. Looking at these tables, you might expect to always get the same

value, but you will not. Here is the Age in the 1st CSV file as #GETTABVAL uses it (the range

columns are sorted in descending order):

Age,Effdate,Value

R,R,V

0,1/1/1900,1.5

0,1/1/2000,1.7

0,1/1/2005,0.4

55,1/1/2000,2.0

55,1/1/2005,0.5

60,1/1/2000,3.0

If you try to look up the 12/31/99 value for someone born 3/17/1939 (age 60.8) using the 1st CSV

file (where Effdate is the first column), #GETTABVAL returns 1.5. It looks for the appropriate

row(s) for 12/31/99 and finds only one: (1/1/1900,0,1.5). Since age 60 is after age 0, 1.5 is

returned

If you try to look up the age 60.8 value as of 12/31/99 using the 2nd CSV file (where Age is the

first column), #GETTABVAL returns 0. It looks for the appropriate row(s) for age 60.8 and finds

only one: (60,1/1/2000,3.0). Since 12/31/99 is before 1/1/2000, there is no value to lookup, and 0

is returned.

Examples

Example 1 – Use the 401(a)(17) maximum compensation limits to limit the salary in a salary

transformation

First, save a copy of RegMaxComp.txt as a CSV file called RegMaxComp.CSV because #GETTABVAL

only works with CSV files. The file can be saved in the client directory or in the directory

containing the original RegMaxComp.txt file. The file should look something like this:

1989,200000

1990,209200

1991,222220

1992,228860

1993,235840

1994,150000

1995,153255

1996,157305

1997,161940

1998,165510

1999,168150

2000,172095

2001,178125

2002,200000

2003,203180

2004,207660

2005,213320

2006,221480

2007,228880

2008,234280

2009,246700

2010,246700

2011,246700

What’s New, ProAdmin version 3.06 - 14 - December 2013

2012,254780

2013,259100

If you want, you can add column headings and a row containing column types:

Year,Limit

E,V

1989,200000

1990,209200

1991,222220

…

Here is a salary transformation that uses the salary limit:

BegPlanYear := #BEGMTH (2 #FSTBUSDAY #DATE) & ; beginning of plan year

Year := #YEAR BegPlanYear &

SalLimit := ‘RegMaxComp’ #GETTABVAL (Year) &

#THIS #MIN SalLimit

Example 2 – The assumed hours per day varies over time by plan, location and age.

LocationCode and PlanCode are effective date array coded fields that indicate in which locations

and plans the member has been. The value in each of these arrays is the numeric ProAdmin code.

LocationCode contains

Date Code

1/01/1980 1

11/17/1990 2

9/3/1999 1

1/01/2012 2

 and PlanCode contains

Date Code

1/01/1980 1

7/21/1995 2

1/01/2012 3

The HoursByPlanLocAge.CSV file might look like this:

 Date, Plan, Loc, Age, Value

 R, E, E, R, V

 1/1/2000,1,1,0,8.1

 1/1/2000,1,1,55,8

 1/1/2000,1,1,60,7.9

 1/1/2000,2,1,0,7.7

 1/1/2000,2,1,55,7.6

 1/1/2000,2,1,60,7.9

 1/1/2000,3,1,0,8.1

 1/1/2000,3,1,55,7.7

 1/1/2000,3,1,60,7.8

...

 1/1/2000,1,2,0,7.8

 1/1/2000,1,2,55,7.7

 1/1/2000,1,2,60,7.7

...

or this:

What’s New, ProAdmin version 3.06 - 15 - December 2013

 Date, Plan,, Loc,, Age, Value
 R, E,I, E,I, R, V

 1/1/2000,1,Salaried,1,NYC,0,8.1

 1/1/2000,1,Salaried,1,NYC,55,8

 1/1/2000,1,Salaried,1,NYC,60,7.9

 1/1/2000,2,Hourly,1,NYC,0,7.7

 1/1/2000,2,Hourly,1,NYC,55,7.6

 1/1/2000,2,Hourly,1,NYC,60,7.9

 1/1/2000,3,Admin,1,NYC,0,8.1

 1/1/2000,3,Admin,1,NYC,55,7.7

 1/1/2000,3,Admin,1,NYC,60,7.8

...

 1/1/2000,1,Salaried,2,LA,0,7.8

 1/1/2000,1,Salaried,2,LA,55,7.7

 1/1/2000,1,Salaried,2,LA,60,7.7

...

Here’s what an hours transformation might look like

D_DT := #DATE & ; calculation dates

LOC := LocationCodes &

PLAN := PlanCodes &

Age := D_DT #YEARDIF DateOfBirth &

Rates := ‘HoursByPlanLocAge’ #GETTABVAL (D_DT, PLAN, LOC, AGE) &

DaysWorked := 0 #MAX [(1 + #DATE) – DateOfHire] &

NetDaysWorked := 0 #MPNET DaysWorked &

NetHoursWorked := NetDaysWorked * Rates &

HoursInYear := 1 #MPSUM NetHoursWorked &

#IF HoursInYear < 501

#THEN 0

#ELSEIF HoursInYear < 1000

#THEN .5

#ELSE 1 #MIN (HoursInYear / 1800) #ENDIF

If you wanted to freeze the rates in effect at 12/31/2012, but reflect any age, plan and location

changes that occur after 12/31/2012, you only need to freeze the date:

D_DT := 12/31/2012 #MIN #DATE & ; freeze calc. dates at 12/31/12

LOC := LocationCodes &

PLAN := PlanCodes &

Age := D_DT #YEARDIF DateOfBirth &

Rates := ‘HoursByPlanLocAge’ #GETTABVAL (D_DT, PLAN, LOC, AGE) &

DaysWorked := 0 #MAX [(1 + #DATE) – DateOfHire] &

NetDaysWorked := 0 #MPNET DaysWorked &

NetHoursWorked := NetDaysWorked * Rates &

HoursInYear := 1 #MPSUM NetHoursWorked &

#IF HoursInYear < 501

#THEN 0

#ELSEIF HoursInYear < 1000

#THEN .5

#ELSE 1 #MIN (HoursInYear / 1800) #ENDIF

	What’s New in version 3.06 December 2013
	Interface
	Census Specifications
	Interest & Annuity Factor Components
	Operators
	Plan Definition
	Actuarial Equivalence
	Database Field Components
	Custom Operators
	Salary Definitions
	Output
	Tools
	System
	Changes Log

	#GETTABVAL Operator

